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Ingredients for Graph Neural Networks

• Traditional ML techniques cannot process native graph structured data.

⇒ Graph neural nets (GNNs) can!

• Three core concepts that we require:

1. Permutation invariance;

2. Permutation equivariance;

3. Locality.

• With the above, can define the general class GNNs.



Permutation Invariance

Want 𝑓: 𝐺 ↦ ℝ𝑛×𝑑 indifferent to 

‘representation’ of 𝐺:
𝐺1 ≅ 𝐺2 ⇒ 𝑓 𝐺1 = 𝑓(𝐺2)

• Consider 𝑓: 𝑥1, ⋯ , 𝑥𝑛 ↦ ℝ𝑑.

• Must construct feature matrix 𝑿:

construction ⇒ ordering of 𝑥1, ⋯ , 𝑥𝑛 !

• 𝑓 must be indifferent to labelling, i.e.:

𝑓 𝑷𝑿 = 𝑓 𝑿 for 𝑷 ∈ 𝑆𝑛

⇒ permutation invariance

Courtesy: www.math.cmu.edu



Permutation Equivariance

• Now, consider 𝑓: 𝐺 = (𝑿, 𝑨) ↦ ℝ𝑛×𝑑 i.e. 
output over every node.

• Shuffling labels should at most shuffle 
outputs of 𝑓, i.e.:

𝑓 𝑷𝑿, 𝑷𝑨𝑷𝑇 = 𝑷𝑓 𝑿, 𝑨 for 𝑷 ∈ 𝑆𝑛

⇒ permutation equivariance

Courtesy: www.math.cmu.edu



Locality

• Graphs have natural notion of locality.

• For every 𝑣, define its (1-hop) neighbourhood:

𝑁𝑣: = {𝑢 ∈ 𝑉: (𝑣, 𝑢) ∈ 𝐸}

• Define multiset 𝑁 ≔ 𝑁𝑣: 𝑣 ∈ 𝑉 .

• Want permutation equivariant 𝑓 that exploit locality 
of 𝐺

⇒ define 𝑓 over the multiset 𝑁 appropriately!

2-hop

3-hop

1-hop

𝑣

Node of interest



A general framework for GNNs

Putting ingredients together, construct 𝑓: (𝑿, 𝑨) ↦ ℝ𝑛×𝑑 :

𝑓 𝑿, 𝑨 : =

ℎ𝑣1

⋮
ℎ𝑣𝑛

=

𝑔 𝑁𝑣1
, 𝑨

⋮
𝑔(𝑁𝑣𝑛

, 𝑨)
,

Where 𝑔: 𝑁𝑣 ↦ ℝ𝑑is:
1. permutation invariant;
2. local.

⇒ 𝑓 is permutation equivariant.

• GNN can be applied across three main tasks:
• Node focused;
• Graph focused;
• Edge focused.



Flavours of GNNs

• Local functions 𝑔 determine 
behaviour of overall model.

• Three main flavours of 𝑔:

• Convolutional;

• Attentional;

• Message Passing.

Message passing most general

⇒ most expressive!

Courtesy: P. Veličković



Expressivity:
Analysing the power of GNNs



Expressivity

• The study of:

• Computational capabilities, and;

• Behaviour of GNNs.

• Canonical framework relies on graph isomorphism problem (GIP):

“Given two graphs 𝐺1 and 𝐺2, can we decide if 

they are isomorphic or not?”

• Gold standard for heuristics:

⇒ Weisfeiler-Lehman graph isomorphism test.



Example node

Weisfeiler-Lehman test

• Represent 𝐺1 and 𝐺2 as multisets 

of node colourings 𝐶(𝑙,1) and 

𝐶(𝑙,2).

• Iteratively refine node colourings.

• Terminate algorithm if:

1. No bijection between 𝐶(𝑙,1) and 

𝐶(𝑙,2) ⇒ 𝐺1 ≇ 𝐺2

2. Colours at step 𝑙 ‘same’ as at 
step (𝑙 − 1)

𝑣
𝑢1

𝑢2
Step (𝑙 − 1)

𝐶𝑣
(𝑙−1)

𝐶𝑢1

(𝑙−1) 𝐶𝑢2

(𝑙−1)

⇒ 𝐶𝑂𝑀𝐵𝐼𝑁𝐸{      , {     ,     }} = 

Step 𝑙 b)

𝐶𝑣
(𝑙)

𝐶𝑢1

(𝑙) 𝐶𝑢2

(𝑙)

Step 𝑙 a)



Step 1

Example
𝐺1 𝐺2

TERMINATE

Step 1

Step 2

Step 3

Step 4



1-WL & GNN Equivalence I

• 1-WL is reminiscent of the message passing mechanism!

“A standard message passing GNN is at 

most as expressive as 1-WL”

Theorem (Xu et al., Morris et al.): equivalence holds if:
1. Composition of 𝑀𝑆𝐺, 𝐴𝐺𝐺 and 𝑈𝑃𝑇 constructs injective map from 

ℎ𝑣
𝑙−1

, ℎ𝑢
(𝑙−1)

: 𝑢 ∈ 𝑁𝑣 → ℎ𝑣
(𝑙)

and;

2. 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡: ℎ𝑣
(𝐿)

: 𝑣 ∈ 𝑉 ↦ℝ𝑑 is injective.

• Conditions are sufficient but not necessary: 

⇒ Can we find necessary conditions?

Keyulu Xu et al. “How powerful are graph neural networks?” In: arXiv preprint arXiv:1810.00826 (2018)

Christopher Morris et al. “Weisfeiler and leman go neural: Higherorder graph neural networks”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01. 2019, pp. 4602–4609



1-WL & GNN Equivalence II

• Expressivity frameworks ⇒ can understand a lot about GNNs!

• Some known classes of graphs impervious to 1-WL, e.g. 𝑘-regular:

‘Optimal message passing GNN architectures 

cannot distinguish 𝑘-regular graphs.’

• What is the complete characterisation of the classes of graphs 
impervious to 1-WL or higher k-WL tests?

• Important: could help us design more expressive graph-based models!



Developments & Drawbacks

• Higher order hierarchical heuristics, e.g. k-WL (citation)

• 𝑘-tuples of adjacent nodes used to construct new colourings:

⇒ information content in each colouring is greater;

⇒ mechanism becomes more ‘non-local’ for greater 𝑘, can distinguish more substructures in 
graphs;

⇒ computationally expensive!

• Inspired hierarchical models: 𝑘-GNNs, Message Passing Simplicial 
Networks (MPSNs), Cell Complex Networks (CWNs) etc.:

• All much more powerful than 1-WL but very computationally expensive;

• Message passing mechanism becomes more ‘non-local’ ⇒ generalisation 
issues?

Christopher Morris et al. “Weisfeiler and leman go neural: Higherorder graph neural networks”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01. 2019, pp. 4602–4609.
Cristian Bodnar et al. “Weisfeiler and lehman go topological: Message passing simplicial networks”. In: International Conference on Machine Learning. PMLR. 2021, pp. 1026–1037.

Bodnar, Cristian, et al. "Weisfeiler and lehman go cellular: Cw networks." Advances in Neural Information Processing Systems 34 (2021): 2625-2640.



Developments & Drawbacks

• A more complete notion of expressivity?

‘Similarity’ more useful than ‘sameness’

• Can we develop an ‘approximate’ version of the Weisfeiler-Lehman 
test?

• Models with 1-WL expressivity (very good) perform poorly on 
substructure identification (Chen et. al).

Zhengdao Chen et al. “Can graph neural networks count substructures?” In: Advances in neural information processing systems 33 (2020), pp. 10383–10395.



Algebraic 
Topology:
A new approach to GNNs



General Idea

• Want GNN models that can exploit:

1. Relational information among nodes, and;

2. Structural information of the larger topology.

• Algebraic topology: encode topological structure of 𝐺 in algebraic 
objects.

• Use algebraic objects as means for improving substructure 
identification while preserving relational information.

⇒ Our idea: use graph polynomials!



Graph Polynomials

• Active area of combinatorics/algebraic graph theory.

• Graph polynomial: polynomial representation of 𝐺.

• Example: from adjacency matrix 𝐴 of 𝐺, the characteristic polynomial 
𝑝𝐴 𝑥, 𝜆 ≔ det(𝐴 − 𝜆𝐼).

• Many graph polynomials exist

• We consider the Tutte-Whitney Polynomial.



Tutte-Whitney Polynomial

𝑇 𝐺; 𝑥, 𝑦 ≔ 

𝐴⊆𝐸

𝑥 − 1 𝑟𝐺−𝑟𝐺 𝐴 𝑦 − 1 𝑛𝐺

= σ𝑖,𝑗≥0 𝑏𝑖,𝑗𝑥𝑖𝑦𝑗 , 𝑏𝑖,𝑗 ∈ ℤ.

• Generalisation of the chromatic polynomial 𝑃(𝐺; 𝜆).

• Encodes many interesting structures in:
1. The evaluations of 𝑇 𝐺; 𝑥, 𝑦 , and;

2. The coefficients 𝑏𝑖,𝑗.

• Proving above theorems (combinatorically) is difficult.

• Can ML models learn to interpret 𝑻 𝑮; 𝒙, 𝒚 even in absence of 
theorems?



Our Research I

• Integrating topological information 𝑇 𝐺; 𝑥, 𝑦 in a GNN:

1. GNNconcat;

2. GNNhybrid.

• Testing models on toy data sets:

• Can they identify structures such as triangles, squares etc.?

• Do they balance locality with substructure identification well?

• Test best models on real world data where substructure identification      
is important but not principal task.



Our Research II

• GNNconcat: redundant data augmentation?

• GNNhybrid: better model design?
• Introduce specialised unit for polynomial interpretation?

• Easy to define distances on the space of finite bivariate polynomials:
• Similarity metric?

• Biggest stumbling block:
• Polynomials neglect node information;

• Computational complexity of 𝑇 𝐺; 𝑥, 𝑦 ;

• 𝑇 𝐺; 𝑥, 𝑦 has nice properties (e.g. multiplicativity): can we exploit them?

• More information than needed?
1. Calculate 𝑇 only over subgraphs of interest?

2. Better choices of graph polynomials that are less expensive?



Addenda:
Additional slides



Permutation Invariance

• If 𝐺1 ≅ 𝐺2 then 𝑓 𝐺1 = 𝑓 𝐺2 !

• Consider just the set of feature vectors: 

𝑋 = 𝑥1, ⋯ , 𝑥𝑛 ⊆ 𝜒, 𝑥𝑖 ∈ ℝ𝑘 .

• Let 𝑓: 𝜒 → ℝ.

• To apply 𝑓 to 𝑋, must construct a feature 
matrix 𝑿:

construction ⇒ ordering of 𝑥1, ⋯ , 𝑥𝑛 !

• 𝑓 must be permutation invariant:

𝑓 𝑷𝑿 = 𝑓 𝑿 for 𝑷 ∈ 𝑆𝑛

Courtesy: www.math.cmu.edu



Permutation Equivariance I

• Now, suppose 𝑓: 𝐴 → ℝ𝑛.

• 𝑓 still must be agnostic to ordering of 
𝑥1, ⋯ , 𝑥𝑛 !

• 𝑓 must be permutation equivariant:

⇒ 𝑓(𝑷𝑿) = 𝑷𝑓(𝑿) for 𝑷 ∈ 𝑆𝑛.

Courtesy: www.math.cmu.edu



Permutation Equivariance II

• Now, define 𝑓: 𝐺 → ℝ𝑛, 𝐺 = 𝑉, 𝐸 .

• Represent 𝐺 via adjacency matrix 𝐴

𝑎𝑖𝑗 = ቊ
1, 𝑖𝑓 𝑖, 𝑗 ∈ 𝐸,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• 𝑃 must now be applied to both rows and 
columns in 𝐴 such that 𝑷𝑨𝑷𝑇 = 𝑨.

• Hence, permutation equivariance becomes:

⇒ 𝑓 𝑷𝑿, 𝑷𝑨𝑷𝑇 = 𝑓 𝑿, 𝑨 for 𝑷 ∈ 𝑆𝑛

Courtesy: www.math.cmu.edu



Message Passing GNNs

Let 𝐺 be an attributed graph. Then a message passing GNN builds 
latent vector representations ℎ𝑣 at each node 𝑣 in the following iterative 
fashion:

1. Initialise: ℎ𝑣
(0)

← 𝑥𝑣, ∀𝑣 ∈ 𝑉;

2. For 0 < 𝑙 ≤ 𝐿, update the latent vectors ℎ𝑣
(𝑙)

:

I. Message: 𝑚𝑣𝑢
𝑙

← 𝑀𝑆𝐺(𝑙−1) ℎ𝑣
(𝑙−1)

, ℎ𝑢
(𝑙−1)

for all 𝑢 ∈ 𝑁𝑣;

II. Aggregate: 𝑎𝑣
(𝑙)

← 𝐴𝐺𝐺 𝑙−1 𝑚𝑣𝑢
(𝑙−1)

: 𝑢 ∈ 𝑁𝑣 ;

III. Update:ℎ𝑣
(𝑙)

← 𝑈𝑃𝑇(𝑙−1) ℎ𝑣
(𝑙−1)

, 𝑎𝑣
(𝑙−1)

.



1-D Weisfeiler-Lehman Test

Let 𝐺1 and 𝐺2 be attributed graphs. Then:

1. Initialise each node 𝑣 ∈ 𝑉 with colour 𝐶𝑣
(𝑖,0)

← 𝑋𝑣
(𝑖)

for 𝑖 ∈ 1,2 ;

2. For 𝑙 = 1, 2, ⋯ , max{ 𝑉1 , 𝑉2 }:

a) Update node colours: 𝐶𝑣
(𝑖,𝑙)

← 𝐻𝐴𝑆𝐻 𝐶𝑣
𝑖,𝑙−1

, 𝐶𝑢
(𝑖,𝑙−1)

: 𝑢 ∈ 𝑁𝑣 for all 

𝑣 ∈ 𝑉 and 𝑖 ∈ 1,2 ;

b) Test: If 𝐶𝑣
(1,𝑙)

: 𝑣 ∈ 𝑉 ≠ 𝐶𝑣
(2,𝑙)

: 𝑣 ∈ 𝑉 then 𝐺1≇𝐺2.

• If colours in step 𝑙 ‘same’ as in step (𝑙 − 1), terminate.

• 𝐻𝐴𝑆𝐻 is injective.
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