# Topologically Informed Graph Neural Networks

Ben Cullen



Università di Pisa

# Ingredients for Graph Neural Networks

A brief introduction



UNIVERSITÀ DI PISA

#### Ingredients for Graph Neural Networks

- Traditional ML techniques cannot process native graph structured data.
   ⇒ Graph neural nets (GNNs) can!
- Three core concepts that we require:
  - 1. Permutation invariance;
  - 2. Permutation equivariance;
  - 3. Locality.
- With the above, can define the general class GNNs.

#### **Permutation Invariance**

Want  $f: G \mapsto \mathbb{R}^{n \times d}$  indifferent to 'representation' of G: $G_1 \cong G_2 \Rightarrow f(G_1) = f(G_2)$ 

- Consider  $f: \{x_1, \cdots, x_n\} \mapsto \mathbb{R}^d$ .
- Must construct feature matrix X: construction ⇒ ordering of {x<sub>1</sub>, ..., x<sub>n</sub>}!
  f must be indifferent to labelling, i.e.: f(PX) = f(X) for P ∈ S<sub>n</sub> ⇒ permutation invariance



Courtesy: www.math.cmu.edu

#### **Permutation Equivariance**

- Now, consider  $f: G = (X, A) \mapsto \mathbb{R}^{n \times d}$  i.e. output over every node.
- Shuffling labels should **at most** shuffle outputs of *f*, i.e.:
  - $f(\mathbf{P}\mathbf{X}, \mathbf{P}\mathbf{A}\mathbf{P}^T) = \mathbf{P}f(\mathbf{X}, \mathbf{A})$  for  $\mathbf{P} \in S_n$ 
    - $\Rightarrow$  permutation equivariance



## Locality

- Graphs have natural notion of locality.
- For every v, define its (1-hop) neighbourhood:

$$N_{\nu} := \{ u \in V : (\nu, u) \in E \}$$

- Define multiset  $N \coloneqq \{\{N_v : v \in V\}\}$ .
- Want permutation equivariant f that exploit locality  $\ensuremath{^{3\text{-hop}}}$  of G

Node of interest

2-hop

1-hop

 $\Rightarrow$  define f over the multiset N appropriately!

#### A general framework for GNNs

Putting ingredients together, construct  $f: (X, A) \mapsto \mathbb{R}^{n \times d}$ :

$$f(\boldsymbol{X}, \boldsymbol{A}) := \begin{bmatrix} h_{v_1} \\ \vdots \\ h_{v_n} \end{bmatrix} = \begin{bmatrix} g(N_{v_1}, \boldsymbol{A}) \\ \vdots \\ g(N_{v_n}, \boldsymbol{A}) \end{bmatrix}$$

Where  $g: N_{v} \mapsto \mathbb{R}^{d}$  is:

- 1. permutation invariant;
- 2. local.

 $\Rightarrow$  f is permutation equivariant.

- GNN can be applied across three main tasks:
  - Node focused;
  - Graph focused;
  - Edge focused.

### Flavours of GNNs

- Local functions g determine behaviour of overall model.
- Three main flavours of g:
  - Convolutional;
  - Attentional;
  - Message Passing.

Message passing most general ⇒ most expressive!



Courtesy: P. Veličković

# **Expressivity:**

Analysing the power of GNNs



UNIVERSITÀ DI PISA

### Expressivity

- The study of:
  - Computational capabilities, and;
  - Behaviour of GNNs.
- Canonical framework relies on graph isomorphism problem (GIP): "Given two graphs  $G_1$  and  $G_2$ , can we decide if they are isomorphic or not?"
- Gold standard for heuristics:
  - ⇒ Weisfeiler-Lehman graph isomorphism test.

#### Weisfeiler-Lehman test

- Represent  $G_1$  and  $G_2$  as multisets of node colourings  $C^{(l,1)}$  and  $C^{(l,2)}$ .
- Iteratively refine node colourings.
- Terminate algorithm if:
- 1. No bijection between  $C^{(l,1)}$  and  $C^{(l,2)} \Rightarrow G_1 \ncong G_2$
- 2. Colours at step l 'same' as at step (l-1)





#### 1-WL & GNN Equivalence I

 1-WL is reminiscent of the message passing mechanism!
 "A standard message passing GNN is at most as expressive as 1-WL"

Theorem (Xu et al., Morris et al.): equivalence holds if:

- 1. Composition of MSG, AGG and UPT constructs injective map from  $\left(h_{v}^{(l-1)}, \left\{h_{u}^{(l-1)}: u \in N_{v}\right\}\right) \rightarrow h_{v}^{(l)}$  and;
- 2.  $f_{readout}$ :  $\{h_v^{(L)}: v \in V\} \mapsto \mathbb{R}^d$  is injective.

• Conditions are sufficient but not necessary:

 $\Rightarrow$  Can we find necessary conditions?

#### 1-WL & GNN Equivalence II

- Expressivity frameworks  $\Rightarrow$  can understand a lot about GNNs!
- Some known classes of graphs impervious to 1-WL, e.g. k-regular:
   'Optimal message passing GNN architectures cannot distinguish k-regular graphs.'
- What is the complete characterisation of the classes of graphs impervious to 1-WL or higher k-WL tests?

• Important: could help us design more expressive graph-based models!

#### **Developments & Drawbacks**

• Higher order hierarchical heuristics, e.g. k-WL (citation)

• k-tuples of adjacent nodes used to construct new colourings:

 $\Rightarrow$  information content in each colouring is greater;

 $\Rightarrow$  mechanism becomes more 'non-local' for greater k, can distinguish more substructures in graphs;

 $\Rightarrow$  computationally expensive!

 Inspired hierarchical models: k-GNNs, Message Passing Simplicial Networks (MPSNs), Cell Complex Networks (CWNs) etc.:

• All much more powerful than 1-WL but very computationally expensive;

 Message passing mechanism becomes more 'non-local' ⇒ generalisation issues?

Christopher Morris et al. "Weisfeiler and leman go neural: Higherorder graph neural networks". In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01. 2019, pp. 4602–4609. Cristian Bodnar et al. "Weisfeiler and lehman go topological: Message passing simplicial networks". In: International Conference on Machine Learning. PMLR. 2021, pp. 1026–1037. Bodnar, Cristian, et al. "Weisfeiler and lehman go cellular: Cw networks." *Advances in Neural Information Processing Systems* 34 (2021): 2625-2640.

#### **Developments & Drawbacks**

• A more complete notion of expressivity?

'Similarity' more useful than 'sameness'

- Can we develop an 'approximate' version of the Weisfeiler-Lehman test?
- Models with 1-WL expressivity (very good) perform poorly on substructure identification (Chen et. al).

# Algebraic Topology:

A new approach to GNNs



Università di Pisa

#### General Idea

- Want GNN models that can exploit:
  - 1. Relational information among nodes, and;
  - 2. Structural information of the larger topology.
- Algebraic topology: encode topological structure of G in algebraic objects.
- Use algebraic objects as means for improving substructure identification while preserving relational information.

 $\Rightarrow$  Our idea: use graph polynomials!

#### **Graph Polynomials**

- Active area of combinatorics/algebraic graph theory.
- Graph polynomial: polynomial representation of G.
- Example: from adjacency matrix A of G, the characteristic polynomial  $p_A(x, \lambda) \coloneqq \det(A \lambda I)$ .
- Many graph polynomials exist
  - We consider the **Tutte-Whitney Polynomial**.

#### Tutte-Whitney Polynomial

$$T(G; x, y) \coloneqq \sum_{A \subseteq E} (x - 1)^{r_G - r_G(A)} (y - 1)^{n_G}$$
$$= \sum_{i,j \ge 0} b_{i,j} x^i y^j, \quad b_{i,j} \in \mathbb{Z}.$$

- Generalisation of the chromatic polynomial  $P(G; \lambda)$ .
- Encodes many interesting structures in:
  - 1. The evaluations of T(G; x, y), and;
  - 2. The coefficients  $b_{i,j}$ .
- Proving above theorems (combinatorically) is difficult.
- Can ML models learn to interpret T(G; x, y) even in absence of theorems?

#### Our Research I

- Integrating topological information T(G; x, y) in a GNN:
  - 1. GNNconcat;
  - 2. GNNhybrid.
- Testing models on toy data sets:
  - Can they identify structures such as triangles, squares etc.?
  - Do they balance locality with substructure identification well?
- Test best models on real world data where substructure identification is important but not principal task.

### Our Research II

- GNNconcat: redundant data augmentation?
- GNNhybrid: better model design?
  - Introduce specialised unit for polynomial interpretation?
- Easy to define distances on the space of finite bivariate polynomials:
  - Similarity metric?
- Biggest stumbling block:
  - Polynomials neglect node information;
  - Computational complexity of T(G; x, y);
  - T(G; x, y) has nice properties (e.g. multiplicativity): can we exploit them?
  - More information than needed?
    - 1. Calculate T only over subgraphs of interest?
    - 2. Better choices of graph polynomials that are less expensive?

# Addenda:

Additional slides



Università di Pisa

#### **Permutation Invariance**

- If  $G_1 \cong G_2$  then  $f(G_1) = f(G_2)!$
- Consider just the set of feature vectors:  $X = \{x_1, \cdots, x_n\} \subseteq \chi, x_i \in \mathbb{R}^k.$
- Let  $f: \chi \to \mathbb{R}$ .
- To apply f to X, must construct a feature matrix X:

construction  $\Rightarrow$  ordering of  $\{x_1, \dots, x_n\}$ ! • f must be permutation invariant: f(PX) = f(X) for  $P \in S_n$ 



#### Permutation Equivariance I

- Now, suppose  $f: A \to \mathbb{R}^n$ .
- f still must be agnostic to ordering of  $\{x_1, \cdots, x_n\}!$
- f must be permutation equivariant:

 $\Rightarrow f(\mathbf{PX}) = \mathbf{P}f(\mathbf{X}) \text{ for } \mathbf{P} \in S_n.$ 



#### Permutation Equivariance II

- Now, define  $f: G \to \mathbb{R}^n$ , G = (V, E).
- Represent G via adjacency matrix A  $a_{ij} = \begin{cases} 1, if \ (i,j) \in E, \\ 0, otherwise. \end{cases}$
- P must now be applied to both rows and columns in A such that  $PAP^T = A$ .
- Hence, permutation equivariance becomes:  $\Rightarrow f(PX, PAP^{T}) = f(X, A) \text{ for } P \in S_{n}$



#### Message Passing GNNs

Let G be an attributed graph. Then a message passing GNN builds latent vector representations  $h_v$  at each node v in the following iterative fashion:

1. Initialise: 
$$h_v^{(0)} \leftarrow x_v, \forall v \in V;$$

2. For  $0 < l \leq L$ , update the latent vectors  $h_v^{(l)}$ : I. Message:  $m_{vu}^{(l)} \leftarrow MSG^{(l-1)}\left(h_v^{(l-1)}, h_u^{(l-1)}\right)$  for all  $u \in N_v$ ; II. Aggregate:  $a_v^{(l)} \leftarrow AGG^{(l-1)}\left(\left\{m_{vu}^{(l-1)}: u \in N_v\right\}\right)$ ; III. Update: $h_v^{(l)} \leftarrow UPT^{(l-1)}\left(h_v^{(l-1)}, a_v^{(l-1)}\right)$ .

#### 1-D Weisfeiler-Lehman Test

Let  $G_1$  and  $G_2$  be attributed graphs. Then:

- 1. Initialise each node  $v \in V$  with colour  $C_v^{(i,0)} \leftarrow X_v^{(i)}$  for  $i \in \{1,2\}$ ;
- 2. For  $l = 1, 2, \dots, \max\{|V_1|, |V_2|\}$ :
  - a) Update node colours:  $C_v^{(i,l)} \leftarrow HASH\left(C_v^{(i,l-1)}, \left\{\left\{C_u^{(i,l-1)}: u \in N_v\right\}\right\}\right\}$  for all  $v \in V$  and  $i \in \{1,2\}$ ;
    - b) Test: If  $\left\{ \left\{ C_{v}^{(1,l)} : v \in V \right\} \right\} \neq \left\{ \left\{ \overline{C_{v}^{(2,l)}} : v \in V \right\} \right\}$  then  $G_{1} \ncong G_{2}$ .
- If colours in step l 'same' as in step (l-1), terminate.
- *HASH* is injective.